# CDF Run2 Computing Model

Frank Würthwein (MIT)

- Overview
- CAF Hardware
- CAF software
- Stage1 and beyond

### Run2 Computing Model



- Code development anywhere.
- Job submission from anywhere.
- Analysis of  $\sim$ 5nb dataset within days.
- Store skim in CAF or desktop.
- Re-run on skim on CAF or desktop.

# Complete Hardware Picture



### CAF hardware: motivation

- 100 fs  $\rightarrow$  1600 disks  $\Rightarrow$  expect  $\geq$  3 drive failures per week!!!  $\Rightarrow$  we need hot-swap & RAID5 !!!
- physics groups want:  $300\text{TB}/2\text{fb}^{-1} \rightarrow \text{need cheap disks: IDE}$
- 1THz CPU power/fb<sup>-1</sup>  $\rightarrow$  need cheap CPU: Dual PC's
- CDF software is slow: WN I/O < 10MB/sec until 2005!!!

### CAF Hardware Constraints

- Space:  $\sim 40$  racks available;  $\sim 30$  racks needed: 1U Duals!!!
- match fs & WN I/O, CPU, and LAN networking.
- match cache disk size with archive vs disk I/O

### Networking Constraints

- need to avoid many WN  $\rightarrow$  one fs
- Inter-switch I/O in FCC
- I/O FCC  $\leftrightarrow$  "B0"
- I/O new building  $\leftrightarrow$  "B0"
- I/O old trailers  $\leftrightarrow$  "B0"
- WAN I/O

## CAF Stage1 hardware

#### 1. File server

- 2.2TB useable after RAID50 (hot-swap)
- Dual 1.4GHz P3, 2GB RAM
- 200MB/s local I/O
- 1GigE: 65MB/sec LAN I/O, CPU limited (??).
- 4U rackmount

### 2. Worker Nodes

- Dual P3 1.26GHz / Dual Athlon MP 1600+
- 2GB RAM / 512MB RAM
- $\sim 80$ GB scratch space, no raid
- 1FE: 10MB/sec
- 2U/1U rackmount

# CAF Stage1 hardware



# CAF Stage 1 7 racks

Stage1
file server
16 disks



## File Server Performance

# **CDF CAF File Server Benchmarking**



### CAF software: CafGui



- Specify shell script.
- Specify test, short, medium, long (5min,2h,6h,48h).
- Specify number of CPU's to run on.
- Specify input & output
- Submit!

# CAF software: Infrastructure



Things a user can do:

- create FileInput tcl fragment for a dataset.
- peek at logfile on worker node.
- ls of execution directory on worker node.
- ls of all file servers.
- kill job.
- Store output in scratch disk ... and run on it later.
- download results tar archive.
- monitor batch queue resource usage.

Check out: http://cdfcaf.fnal.gov/

## CAF Development Team

• FNAL CD: ∼3 FTE

• MIT: 3 FTE

• INFN:  $\sim$ 2 FTE

• Others:  $\sim 1 \text{ FTE}$ 

Prototype & Stage1 project was completed in  $\leq 6$  months.

 $\sim 4.5$  FTE years development time for Stage1.

# CAF Usage



### **Status summary**

|                      | Short | Medium | Long | All types |
|----------------------|-------|--------|------|-----------|
| Running sections     | 9     | 7      | 16   | 32        |
| Pending sections     | 256   | 489    | 268  | 1013      |
| Average waiting time | -     | -      | -    | -         |

## CAF Stage1 Unresolved Issues

- Gain Operational Experience !!!
  - find bugs
  - find bottlenecks
  - understand need for monitoring/alarms
- kerberized rootd
- integrate DH system (dCache now, SAM later)
- eliminate single point of failure
- university ownership issues
- Database Replicas

FY03 and beyond

- Scaling issues
- Grid & SAM & DCAF

# Summary & Conclusion

- Paradigm shift for CDF computing.
- CAF from zero to Stage1 in  $\leq 6$  months.
- Reasonably clear path for remainder of Run2.